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Measurements of criticality in the Olami-Feder-Christensen model

G. Miller and C. J. Boulter
Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 17 April 2002; published 24 July 2002!

The Olami-Feder-Christensen model is a simple lattice based cellular automaton model introduced as a
prototype to study self-organization in systems with a continuous state variable. Despite its simplicity there
remains controversy over whether the system is truly critical in the nonconservative regime. Here we address
this issue by introducing the layer branching rate, which measures how contributions to the system branching
rate vary across the lattice. By considering this quantity for layers far from the edges of the finite-sized lattices,
we find that the model is only critical in the conservative limit, but that previous studies have underestimated
the system branching rate in the nonconservative case. We further derive expressions for the branching rate in
systems where the state variable across the lattice is described by a uniform distribution, in order to determine
the effect of self-organization upon the level of criticality. We find that organization raises the branching rate
in the nearest-neighbor case, but in contrast lowers the level of criticality in a random-neighbor model.
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I. INTRODUCTION

The concept of self-organized criticality~SOC! @1,2# was
introduced by Bak, Tang, and Wiesenfeld~BTW! @3# in 1987
in order to explain the presence of scale invariance in a ra
of naturally occurring systems. The BTW model consists o
lattice with a number of sand grains at each site. The mo
is driven by the random addition of sand, and relaxes vi
sequence of avalanches. As this process is repeated
model evolves to a critical state where characteristic scale
space and time are lost. At each stage the number of grain
sand is conserved~except at the system boundaries! and it
has been shown that this conservation is essential for c
cality in the BTW model@4#.

In many physical systems displaying apparent scale
variance there is some level of dissipation. For example,
may consider earthquakes or landslide dynamics where
appropriate dynamical variables are not necessarily c
served; thus one must go beyond the BTW model. In
attempt to examine the effect of nonconservation on critic
ity Olami, Feder, and Christensen~OFC! @5# introduced a
model motivated by the Burridge-Knopoff spring-block d
scription of earthquake dynamics@6#. The model is described
in detail in Sec. II and should be viewed as a toy model
understanding some generic features of self-organiza
rather than a realistic model of a particular physical proce
playing much the same role as the Ising model does in
tistical mechanics.

Within the OFC model there is a conservation parame
a. Whena50.25 the dynamic variables are conserved d
ing the avalanche process, whereas whena,0.25 there is
some level of dissipation which grows asa is reduced. There
exists a critical value of the conservation parameter 0,ac
<0.25 such that the model displays genuine critical beha
for a>ac and is noncritical fora,ac . For a random-
neighbor version of the model it has been analytically est
lished that the system is never critical in the nonconserva
regime @7,8#. Within the nearest-neighbor version of th
model, determining the value ofac has proved controversia
and this is one of the issues that we focus on in this pape
particular, in Sec. III, we introduce layer branching rates
1063-651X/2002/66~1!/016123~10!/$20.00 66 0161
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the OFC model to provide a more controlled method
extrapolating results to the infinite-lattice limit. In this wa
we predict thatac50.25 so that one only finds critical be
havior in the conservative limit. However, our method pr
dicts that fora,ac the OFC model is nearer criticality tha
many previous estimates have suggested.

In Sec. IV we introduce control cases for both th
random- and nearest-neighbor versions of the OFC mode
order to examine how well the models organize themselv
For the nearest-neighbor model we find that, although
model is only critical in the conservative regime, the orga
zational process is a positive one, resulting in near critica
for a range ofa values. In contrast, self-organization in th
random-neighbor model lowers criticality with respect to t
control case, making this a poor model whenevera,0.25.
Finally, in Sec. V we summarize our results and highlight t
main conclusions of our study.

II. THE OLAMI-FEDER-CHRISTENSEN MODEL

The OFC model@5# is a lattice based model which can b
defined in arbitrary space dimensions@1#. For the purposes
of this paper we concentrate on the two-dimensional cas
which each node (i , j ) on a square lattice is associated with
continuous state variable or energyui j . Initially the energies
are assigned random values in an interval@0,1) say; the up-
per limit on this interval coincides with the ‘‘threshold’’ de
fined below and can be fixed to unity without loss of gen
ality. The system is then slowly driven in such a way that t
energy at all the sites increases uniformly until one of
sites reaches the threshold valueui j 51 and is termed super
critical. When this happens an avalanche occurs at a t
scale much quicker than the driving speed. The supercrit
site relaxes according to

ui j →0, ~2.1!

with its energy distributed to~typically! four neighborsunbrs,
using the rule

unbrs→unbrs1aui j , ~2.2!
©2002 The American Physical Society23-1
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wherea is the conservation parameter discussed in Sec.
any of the neighboring sites become supercritical~i.e., unbrs

>1) as a result of this process they also topple accordin
the same rules. The toppling process is non-Abelian and
more than one site is supercritical either the sites mus
toppled simultaneously, or a special sequential update m
be employed@9#. The avalanche continues until all node va
ues are below the threshold, at which stage the driving p
cess proceeds until the next event is triggered. The two t
scales involved in the dynamics of the model are motiva
from physical behavior such as earthquakes, where st
builds up slowly between tectonic plates over years or
cades~the driving phase!, while the energy release of th
earthquake~the toppling phase! occurs over seconds or min
utes.

Within the model the parametera measures the level o
nonconservation in the system. Ifa50.25 all of the energy
of the toppling site is redistributed to its neighbors and
energy is conserved, while ifa,0.25 it is not. Two distinct
versions of the model are defined by the choice of neighb
ing sites to which energy is distributed. For thenearest-
neighbor (NN) OFC modelthe sites adjacent to the topplin
site are chosen. If the toppling site is on the edge of a lat
there are a reduced number of neighbors~two for a corner
and three for an edge!; thus the edges provide the on
method of dissipation in the conservative casea50.25. Fur-
ther, the edges introduce an inhomogeneity into the sys
which prevents synchronization and is crucial if one is
observe SOC@10#. In a random-neighbor (RN) OFC mode
four sites are chosen at random to receive the toppling
ergy, with the assignment of neighbors changing at each
date, thereby removing any spatial correlations in the sys
and preventing the possibility of synchronization. In the co
servative limit one must include a dissipation mechanism
allow the system to relax to a stable state, which may
done by simulating the effect of boundaries via the num
of neighbors chosen for each toppling site. For example, o
lattice of sizeL3L, one could choose two neighbors~cor-
ner!, three neighbors~edge!, or four neighbors~bulk! with
probabilities 4/L2, 4(L22)/L2, and (L22)2/L2, respec-
tively.

The presence of a self-organized critical state is indica
by a power law distribution of a measured event, for e
ample, the distribution of avalanche sizes in the OFC mo
Thus, as a first attempt to identify the critical valueac ,
which separates the critical and noncritical regimes as
scribed in Sec. I, one may examine log-log plots of simu
tion data searching for straight line fits over several deca
On this basis Olami, Feder, and Christensen initially ide
fied ac

NN'0.05 @5# for the nearest-neighbor OFC mode
Larger scale simulations have indicated that the critical va
is somewhat higher, with Grassberger predictingac

NN>0.18
@10# and more recent work suggestingac

NN'0.25 @11#, indi-
cating that the nearest-neighbor model is never critical in
nonconservative case. The primary difficulty in establish
a definitive result via this route has been the inability
simulate sufficiently large lattices. In the OFC model t
system reaches an organized state only after a ‘‘transien
01612
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riod’’ which grows rapidly with lattice size, severely limiting
the ability to simulate large lattices.

For the random-neighbor OFC model analytic progre
has been possible using mean-field type calculations. M
of the formalism was developed by Lise and Jensen~LJ!
@12#, who used a very simplified approximation for the di
tribution of energiesui j across the lattice to predictac

RN

52/9. Using a more realistic energy distribution reveals t
the model is only critical in the conservative limit soac

RN

50.25 @7,8,13#. The LJ approach for the random-neighb
model involves an analysis of the branching rate,s(a) say,
which measures the average number of supercritical des
dants generated when a single supercritical site topples
the absence of an analytic solution for the nearest-neigh
OFC model, and given the limitations on the size of lattic
that can be simulated discussed above, it has proved valu
to also numerically analyze the branching rate in the near
neighbor case.

In a simulation one simply counts the number of sup
critical descendants generated when each supercritical an
tor topples. The number of descendants assigned to an an
tor may be noninteger, since a supercritical descendant
has originated from more than one neighboring ancestor
its contribution split evenly between those ancestors. Furt
sites at the boundary may have their branching rate weigh
according to the number of neighbors present in order
avoid artificially lowerings in a finite-size system@11#. It is
straightforward to establish that the branching rates(a,L)
in a finite-size (L3L) system satisfies@14#

s~a,L !512
1

s~a,L !
, ~2.3!

wheres(a,L) is the average avalanche size of the syste
For a critical processs(a,L) always increases with system
size since there is no characteristic scale in the system. T
in an infinitely large system a critical process is identified
s51, while s,1 indicates a noncritical process. Recent
de Carvalho and Prado@11# calculated the system branchin
rates(a,L) for a range of differentL values and inferred the
infinite-size limit via extrapolation. Using this approach, th
suggest that the OFC model has a branching rate sm
than 1 whenevera,0.25, with the branching rate close b
not equal to 1 whena is close to the conservative limita
50.25. This latter behavior has been termed ‘‘almost cr
cal’’ and explains why the probability density plots appe
linear @15#. These findings have remained controversial w
alternative extrapolation procedures showing the results m
be consistent withac

NN<0.23 @14#. As a result the question
of whether conservation is necessary for criticality in t
OFC model remains open. We address precisely this issu
the next section.

III. THE LAYER BRANCHING RATE AND CRITICALITY

In order to infer information about how the OFC mod
behaves on arbitrarily large lattices, using simulation stud
it is necessary to introduce some form of extrapolation. I
plicit in this approach is the assumption that near the ce
3-2
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of a large lattice the behavior approaches that of an infini
large system. If this is the case we believe that more pre
information can be extracted from the finite (L3L) simula-
tions by calculating thelayer branching ratess i(a,L), i
51, . . . ,L/2, for the lattice@throughout our study we assum
that L is even; forL odd theL/2 here and below should b
replaced by (L11)/2]. Heres i measures the average num
ber of descendants originating from a supercritical site t
topples in layeri, where layer 1 contains all the sites on t
boundary, layer 2 contains all sites one layer in from
boundary, and so on. Assuming that the sites farthest a
from the boundaries do indeed behave more like those
bedded in an infinitely large system, then for sufficien
largeL, thes i will converge asi increases, with a plausibl
definition of the genuine branching rates(a) being given by

s~a!5 lim
L→`

lim
i→L/2

s i~a,L !. ~3.1!

Since we are relying on simulation studies the first lim
cannot be performed rigorously and so some form of
trapolation will still be required to deduces(a). However,
one hopes that the influence of the boundaries ons i(a,L)
will be small for i nearL/2 in a large lattice. Thus the ex
trapolation should allow more accurate results for a giv
maximum system sizeL than direct examination of the
branching rates(a,L), which does depend on the behavi
near the boundary of the lattice.

A plot of some layer valuess i(a,L) for the casea
50.22 and a range of lattice sizesL is shown in Fig. 1. We
note that the plots for the various system sizes do ove
one another for small layer numbersi, providedL is suffi-
ciently large. More precisely, for a particular layer branchi
rate the simulation results converge asL increases with

lim
L→`

s i~a,L !5s i~a!, ~3.2!

wheres i(a) is the value of thei th layer branching rate in an
arbitrarily large system. We observe from our simulation

FIG. 1. The layer branching rates i(a,L) for the nearest-
neighbor OFC model calculated for the casea50.22 and a range o
lattice sizesL5128,256,500,700,1000.
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sults that, for fixedL, sL/2(a,L) is a poor guide tosL/2(a).
Further, as the layer branching ratess i(a) for small enough
values ofi are easily accessible from the finite-size simu
tions it is profitable to replace Eq.~3.1! with

s~a!5 lim
i→`

s i~a! ~3.3!

as our definition of the true system branching rate. Wh
Fig. 1 allows us to identify a lower bound fors(a) it does
not enable easy extrapolation to the infinite-size limit. In F
2 we plot the same layer branching rate data against
inverse of the layer number 1/i . In this representation the
results for the various lattice sizes can be straightforwar
extrapolated. In particular, fori>25 the limiting values of
the layer branching rates i(a) lie on an approximately
straight line which extrapolates to 0.99660.001. Thus we
concludes(0.22)'0.996 and so the OFC model is noncrit
cal for this value ofa. For clarity in Fig. 2 only a limited
number of layer values have been plotted and a relativ
large 1/i range has been used. It may not be clear from t
figure that the limiting value of the layer branching ra
could not be 1, and hence in Fig. 3 we show the results
the largest lattice size (L51000) on a larger scale, for whic
the extrapolation to a noncritical value is more apparent.

The general behavior described above for the casea
50.22 is repeated for values of the conservation param
a<0.23. Our results for the extrapolated branching rate
the corresponding prediction for the average avalanche
in the infinite volume limit^s(a)&` @found using Eq.~2.3!#
are given in Table I. However, whena is close or equal to
the conservative limita50.25 the behavior is slightly more
complicated. Thus before discussing the results further
first provide a more detailed description of the casesa
50.25 anda50.24.

First, whena50.25 we find that the layer branching rate
s i(0.25) lie below 1 for the outer layers of the lattices, b
s i(0.25)>1 for i>5. This behavior is shown in Fig. 4
which also shows that the layer branching rate conver

FIG. 2. The layer branching rates i(a,L) for the nearest-
neighbor OFC model calculated for the casea50.22 and a range of
lattice sizesL5128,256,500,700,1000, plotted as a function of 1i .
3-3
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much more slowly in the outer layers in this case than for
other choices ofa. In our simulations on smaller lattice size
the layer branching rates dip below 1 again near the cente
the lattice; however, this appears to be a finite-size re
with the i→` limiting behavior, as the lattice size increase
tending toward 1 from above. As a result of this behavior
system branching rate for a finite lattice,s(0.25,L), as cal-
culated by de Carvalho and Prado@11# is very sensitive to the
definition of branching rate in the outermost layer. This e
plains why those authors found a value of the branching
slightly larger than 1 fora50.25, which has been criticize
for violating Eq. ~2.3!. This result is due to a weighting o
the branching rate in the outside layer intended to acco
for the reduced number of neighbors present. Similarly,
noring the outside layer entirely also leads to values of
branching rate larger than 1 in a finite simulation@11#, since
this essentially assumes that the branching rate of the o
most value takes the average value of the inner layers—
clear from our study that this is not the case. In particular,
find s1(a50.25)'0.48 in the unweighted case,s1(a

FIG. 3. The layer branching rates i(a50.22,L51000) for the
nearest-neighbor OFC model, plotted as a function of 1/i .

TABLE I. Values of the extrapolated system branching ra
s(a) and the corresponding extrapolated average avalanche
^s(a)&` for different values of the conservation parametera. For
^s(a)&` the ranges of possible values consistent withs(a) are also
shown. The largest lattice size considered isL51000 except for
a50.25 where only systems up toL5700 have been simulated.

a s(a) ^s(a)&`

0.17 0.94060.005 16.7 (15.4→18.2)
0.18 0.95860.005 23.8 (21.3→27.0)
0.19 0.97960.004 47.6 (40.0→58.8)
0.20 0.98860.003 83.3 (66.7→111)
0.21 0.992460.0008 132 (119→147)
0.22 0.995860.0008 238 (200→294)
0.23 0.997360.0005 370 (313→455)
0.24 0.998760.0005 769 (556→1250)
0.25 1.000060.000006 ` (166667→`)
01612
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50.25)'0.64 in the weighted case, ands1(a50.25)'1 if
we use the average of the remaining inner layers.

Whena50.24 the behavior is different again. The out
layers are reminiscent of the conservative case with the la
branching rates increasing to a value above 1 by the fi
layer. However, these supercritical values only persist up
around the 20th layer, after which the layer branching r
drops below 1, as shown in Fig. 5. Extrapolating the bran
ing rate to the infinite-size limit again yields a value close
but measurably below, 1, describing a noncritical system

The various behaviors described above appear to indi
a continuously changing influence of the layers nearest
edges of the lattice asa is reduced from the conservativ
limit. For a typicala value the layer branching rates increa
for the first few layers, reaching a~local! maximum within
the outer five layers. As we go further into the interior of t
lattice s i(a) decreases to a local minimum value before
creasing again toward the limiting values(a). The location
of the minimum provides a measure of the region of infl

ize

FIG. 4. The layer branching rates i(a,L) for the nearest-
neighbor OFC model calculated for the casea50.25 and a range of
lattice sizesL5128,256,500,700, plotted as a function of 1/i .

FIG. 5. The layer branching rates i(a,L) for the nearest-
neighbor OFC model calculated for the casea50.24 and a range of
lattice sizesL5128,256,500,700,1000, plotted as a function of 1i .
3-4
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MEASUREMENTS OF CRITICALITY IN THE OLAMI- . . . PHYSICAL REVIEW E66, 016123 ~2002!
ence of the enhanced values near the edge of the lattice.
results for a range ofa values are shown in Fig. 6. Fora
50.25 the minimum is only reached in the infinite size lim
with the enhanced values persisting for all of the inter
layers, leading to criticality. Whena50.24 we have seen
~Fig. 5! that the maximum takes a supercritical value, and
minimum is not reached until one is at least 50 layers i
the system. Thus, if we interpret the location of the minimu
as a guide to the extent of finite-size effects in a noncriti
system, we see that large lattices need to be simulate
overcome these effects whena50.24. Fora50.23 the local
maximum near the boundary is no longer the global ma
mum, and the minimum is reached within the first 25 laye
As a is further decreased the local maximum and minim
approach one another, and by the timea50.21 they have
disappeared altogether, with the layer branching rates
playing monotonic behavior. Finally, we note that for a
a1,a2,0.25 one findss i(a1),s i(a2) for all layers i,
while the results fora50.25 clearly do not satisfy this rela
tionship ~see Fig. 6!.

Our results for the system branching rates(a) given in
Table I are considerably larger than the values quoted by
Carvalho and Prado@11#, indicating that the systems ar
nearer criticality than previously predicted. We believe o
results are more accurate because we have used the
vidual layer branching rates, rather than the finite-syst
branching rates(a,L), which is strongly affected by the
results in the outermost layers. For example de Carvalho
Prado finds(a50.22,L)'0.955 for the largest lattice the
consider, which is a reasonable measure of the ave
branching rate across a finite number of layers. Howe
comparison with Fig. 2 shows that this estimate is sign
cantly lower than the layer branching rate for all but the
outermost layers of any simulation. Despite these quan
tive differences our results do agree qualitatively, with cr
cal behavior in the nearest-neighbor OFC model being p
dicted only in the conservative limita50.25.

FIG. 6. The layer branching rates i(a,L) for the nearest-
neighbor OFC model calculated for a range of conservation va
a50.21,0.22,0.23,0.24,0.25, plotted as a function of 1/i . For a
50.25 a lattice of sizeL5700 has been used, whileL51000 for all
other values ofa shown.
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Further support for this prediction can be found from t
average avalanche sizes^s(a,L)& determined for various
conservation levelsa and lattice sizesL. For fixed a
,0.25 and L<500 we find that ^s(a,L)& scales like
^s(a,L)&;L0.54. Although ^s(a,L)& increases rapidly with
L for relatively small lattice sizes, we assume that asL→`
one finds^s(a,L)&→^s(a)&` suggesting that a tanh func
tion might yield a sensible fit for noncritical choices ofa. In
particular, we have fitted our data using

^s~a,L !&

^s~a!&`
5tanhS 1

A~a! F L

^s~a!&`
G0.54D , ~3.4!

whereA(a) and^s(a)&` are used as fitting parameters. Th
fact thatL and ^s(a)&` scale together inside the tanh fun
tion initially seems counterintuitive. However, observation
the sites involved in a given avalanche on the compu
screen reveals that a typical avalanche of sizens involves
sites in a long thin chain~with length of orderns) rather than
a ‘‘blob’’ with radius of orderAns, as might be anticipated
We find that Eq.~3.4! provides an excellent fit for alla
<0.24 as shown in Fig. 7. The values of the fitting para
eters are give in Table II. The functionA(a) is approxi-
mately constant fora,0.22 and vanishes like (124a) as
a→0.25. The values of̂ s(a)&` compare favorably with
those given in Table I which were estimated directly from t
branching rate data. Thus predictions of the branching
found from assuming the fitting function are also in go
agreement with those found by direct measurement. Foa
50.25 the data for̂ s(a,L)& follow a completely different

es FIG. 7. The scaled average avalanche size^s(a,L)&/^s(a)&`

plotted for a range ofa andL values. The dashed line is the tanh
given in Eq.~3.4!.

TABLE II. Values of the fitting parametersA(a) and ^s(a)&`

used in Fig. 7.

a 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.2

A(a) 11.60 11.60 11.60 11.60 11.30 10.20 7.10 3.
^s(a)&` 17.7 27.8 48.5 81.6 140 240 368 70
3-5
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G. MILLER AND C. J. BOULTER PHYSICAL REVIEW E66, 016123 ~2002!
pattern, always displaying an algebraic growth withL, which
is well modeled by the approximation̂s(a,L)&'L2.4/43.
Hence, while we accept that Eq.~3.4! may only be one of
many fits for the limited amount of data presented, it do
demonstrate a level of universality in the avalanche size d
for the nonconservative choices ofa, which is absent in the
conservative casea50.25. This provides further evidenc
that criticality is found only in the conservative case.

In conclusion, in this section we have analyzed simulat
data for both layer branching rates and average avalan
sizes. All of these data are consistent with the prediction
the nearest-neighbor OFC model is critical only in the lim
a50.25. However, our predictions for the system branch
rates are generally higher than previously suggested, ind
ing that the model is ‘‘almost critical’’ for a wide range ofa
values.

IV. ORGANIZATION IN RANDOM- AND NEAREST-
NEIGHBOR OFC MODELS

In this section we present some analytic results describ
control cases for the OFC models. The aim of this sectio
to determine how well the OFC models organize themse
toward criticality, regardless of whether they are genuin
critical or not. To determine this we consider control mod
in which the data arenot organizedand calculate the branch
ing rate to compare with those of the full random-neighb
and nearest-neighbor OFC models. Thus, in our control c
we assume that the site energiesui j at the start of each ava
lanche are drawn from a uniform distribution in the ran
@0,1). We consider the RN and NN cases in turn below.

A. Random-neighbor model

To begin we analyze the random-neighbor OFC model
which some useful results can be found in the literature
particular, we reconsider the paper by Lise and Jensen@12#
that initiated analytic investigation of the random neighb
OFC model as discussed in Sec. II. Although their origi
study was intended to describe the full RN OFC mod
many of the simplifications that LJ used are actually m
appropriate for our control case study. Most notably, th
assumed that the distribution of energies in subcritical s
follow a uniform distribution at every stage of the avalanch
Using this assumption they identified that the branching r
s is given exactly by

s54a^E1&, ~4.1!

where^E1& is the average energy of a supercritical site i
mediately prior to toppling. Within their analysis LJ es
mated^E1& by assuming that the statistics of ancestor a
descendant sites are the same. To clarify, let us denote
first site in the avalanche to topple as being generation 0
supercritical sites directly generated by this topple as gen
tion 1, all supercritical sites resulting from generation
topples as generation 2, and so on. Using this definition
assumed that for any two generationsi and j, ^Ei

1& 5 ^Ej
1&,

where ^Ei
1& is the average energy of a supercritical site

generationi. We believe this assumption is acceptable
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identifying the crossover valueac ~which was the purpose o
the LJ study! but is not suitable in general. To see why this
the case, we note that if^ni& represents the average numb
of supercritical sites in generationi then ^E1& is formally
given by

^E1&5

(
i 50

`

^ni&^Ei
1&

(
i 50

`

^ni&

. ~4.2!

For a critical process these summations are dominated
contributions from high generations~large i ). In this case
^Ei

1& approaches a limiting value@identified by LJ as 1/(1
2a/2)] which is an excellent approximation for^E1&. How-
ever, for a noncritical process a typical avalanche only las
small, finite number of generations and so the summation
Eq. ~4.2! are dominated by low generation numbers. As
show below the assumption̂Ei

1&5^Ej
1& is not accurate for

early generations and hence the LJ calculation needs t
revised.

Now we are in a position to consider our control case
the RN OFC model. Within this model we use the sam
toppling algorithm for distributing the energy to neighborin
sites as in the full RN OFC model. Here we model an in
nitely large system in which we assume that no site rece
more than one contribution in a single avalanche; hence
energy distribution of receiving sites is always uniform. Th
factor stops any organization of the system, yielding
branching rate of a nonorganized system. As the con
model uses uniform data at the start of each avalanche
reasonable to try to obtain analytic results.

We start by looking at the energy distributions of sup
critical sites in each generation. We denote the normali
distribution at generationj by f j (11k) where (11k) is the
supercritical energy value. For a specific generationj >1 the
possible energy values are found to satisfy 0<k<gj (a)
where gj (a)5( i 51

j a i . Given the distribution function a
generationj we can calculatêEj

1& via the definition

^Ej
1&5E

0

gj (a)

~11k! f j~11k!dk. ~4.3!

As we are trying to model an infinitely large system w
assume that prior to the start of an avalanche the site w
maximum energy takes a value arbitrarily close to 1. Th
after the driving phase all other sites remain uniformly d
tributed in the range (0,1). Hence the avalanche begins w
a single seed site with an energy value identically equal to
This seed site is what we denote generation 0. The superc
cal energy distribution of this zeroth generation is theref
given by ad function located at 1, sof 05d(1), ^E0

1&51,
and ^n0&51. In toppling this site to four random neighbo
we obtain the distribution forf 1, which is uniform in the
range (1,11a). More generally, we can relatef j and f j 11
through
3-6
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f j 11~11k8!5H 1

NE
h(k8,a)

gj (a)

f j~11k!dk, 0<k8<gj 11~a!,

0, otherwise,
~4.4!

where gj (a) is defined above,h(k8,a)5max@0,(1/a)
3(k82a)#, and the normalization factor N
5*0

gj 11(a)
*

h(k8,a)

gj (a)
f j (11k)dkdk8.

Using Eqs.~4.3! and ~4.4! recursively we can formally
calculatê Ej

1& for any j >1 using only our knowledge abou
the distributionf 1. In practice, we find thatf j is a piecewise
defined function containingj nonzero pieces, and as a res
for arbitrarily largej the iterative application of these equ
tions becomes computationally prohibitive. However, wor
while progress can still be made by noting that in addition
Eq. ~4.3! we can also work out̂Ej 11

1 & using the distribution
f j . Specifically, for a supercritical site in generationj with
energy 11k, a neighboring site will become supercritical
generationj 11 with probabilitya(11k). The supercritical
energy of this descendant site is uniformly distributed in
range (1,11a1ak); therefore the average value is (
1a/21ak/2). To determinê Ej 11

1 & we must integrate ove
all the possiblek values in the range 0<k<gj (a), where we
need to weight each contribution of (11a/21ak/2) by the
appropriate ancestor probabilityf j (11k) and descendan
probability a(11k), yielding

^Ej 11
1 &5

E
0

gj (a)

~11k!@11~a/2!~11k!# f j~11k!dk

E
0

gj (a)

~11k! f j~11k!dk

.

~4.5!

Either Eq.~4.3! or Eq.~4.5! can be used to obtain~the same!
results for the average supercritical energy in the first f
generations:

^E0
1&51, ~4.6!

^E1
1&511

a

2
, ~4.7!

^E2
1&511

a

2
1

a2

4
1

a3

24112a
. ~4.8!

For a given distribution functionf j we define the corre-
sponding expectation operatorEj in a standard fashion with
Ej@s(k)#5*0

gj (a)s(k) f j (11k)dk. Thus Eq.~4.5! can be re-
written in the form

^Ej 11
1 &511

a

2

Ej@~11k!2#

Ej@~11k!#
, ~4.9!

where by definition@see Eq.~4.3!#

Ej@~11k!#5^Ej
1&. ~4.10!

Using this and the statistical definition of the variance, E
~4.9! simplifies to
01612
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^Ej 11
1 &511

a

2
^Ej

1&1
a

2

Varj~11k!

^Ej
1&

. ~4.11!

Although we cannot determine the value of Varj (11k) with-
out finding f j (11k), we do know it is non-negative. Henc
by assuming that the contribution is zero we obtain a form
lower bound for ^Ej 11

1 & using only ^Ej
1&. Applying this

method recursively, starting from̂E0
1&51 we find the lower

bound^E1
1&,511a/2, which is identical to the exact resu

Eq. ~4.7!, while ^E2
1&,511a/21a2/4, which should be

compared with Eq.~4.8!. The general result is

^Ej
1&,5(

i 50

j S a

2 D i

, ~4.12!

which holds for anyj >0.
We can use these lower bounds in Eq.~4.2! to approxi-

mate^E1& provided we find corresponding approximatio
for the average number of supercritical sites^ni& in a given
generation. The procedure for calculating^nj 11& from ^nj&
is similar to that used in finding Eq.~4.5!. In particular, not-
ing that 4̂ nj& sites receive contributions at this level, w
obtain

^nj 11&54a^nj&E
0

gj (a)

~11k! f j~11k!dk54a^nj&^Ej
1&.

~4.13!

For the first few generations this gives^n0&51, ^n1&54a,
and^n2&516a2(11a/2). Inserting Eq.~4.13! into Eq. ~4.2!
yields an exact expression for^E1& in terms of the indi-
vidual generation supercritical energies^Ej

1&. If we let
^E1& (p) represent the approximation to^E1& found by trun-
cating the summations in Eq.~4.2! at generationp, we find

^E1& (p)5

(
i 50

p H ~4a! i)
j 50

i

^Ej
1&J

11 (
i 50

p21 H ~4a! i 11)
j 50

i

^Ej
1&J . ~4.14!

We approximatê Ej
1& using the lower bounds given in Eq

~4.12! to obtain approximate values for^E1& (p) for a range
of p values. Asp gets large the error due to truncation
reduced, and we formally obtain our approximation for^E1&
by considering the limitp→`. We have compared our pre
dictions with simulations of the control model and the resu
are shown in Fig. 8, where for comparison we have a
plotted the LJ approximation̂E1&LJ51/(12a/2) @12#. We
can see that, although our result is approximate, becaus
have used the lower bounds^Ej

1&,, it is in excellent agree-
ment with the simulation data. The LJ results are sign
cantly larger untila52/9, after which our results coincid
because the control model becomes critical~see below!, and
as discussed earlier the LJ approximation is a reasonable
for cases where the model is critical.

The goal of this section is to calculate the branching r
s for the control model. Since the distribution of subcritic
3-7
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G. MILLER AND C. J. BOULTER PHYSICAL REVIEW E66, 016123 ~2002!
sites has been assumed uniform in the range (0,1), Eq.~4.1!
can be used to finds. Within our scheme we use our ap
proximation for^E1& to derive a value for the branching ra
which is again found to be in excellent agreement with
simulation results of the control case. Thus we believe
results can be used to provide a reliable measure of the
ganizational quality of the full RN OFC model. As expecte
we find that the control model is critical (s>1) when a
>2/9, in agreement with the analysis of LJ@12#. In Fig. 9 we
plot the branching rates for the control case and the
model. We note from this figure that the branching rate in
full model for all a values is lower than in the control cas
this indicates that organization in the RN model is a nega
feature. In other words, the organized data are less cri
than uniformly random data.

Hence, in conclusion, we believe that the rando
neighbor OFC model is a poor prototype for studying se

FIG. 8. Average toppling energies^E1& calculated for the ran-
dom neighbor control model via simulations~circles! and approxi-
mated using lower boundŝEj

1&, for the generation toppling ener
gies ~solid line!. The result of the Lise-Jensen approximati
method is also shown~dot-dashed line!.

FIG. 9. Branching rate for the full random-neighbor OFC mod
~dashed! and the control case~solid! plotted as a function of the
conservation parametera.
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organized criticality in two respects. First, as has previou
been established it is always noncritical in the nonconse
tive regime. Secondly, we have shown here that the org
zational process in the RN OFC model lowers the level
criticality in comparison with uniform random data.

B. Nearest-neighbor model

We now examine a similar control model for a neare
neighbor situation. At the start of each avalanche the ener
of noncritical sites are again assumed to be distributed
formly in @0,1). In contrast to the random-neighbor stu
above, we no longer expect this simplification to allow us
develop a complete theory as correlations are expecte
build up during the course of a single avalanche. This f
lows since sites may receive contributions from more th
one neighbor, and topple more than once during a given a
lanche. Thus we will need to rely on simulations of the co
trol model to some extent. However, we examine the fi
few generations of the toppling process analytically in
similar fashion as in Sec. IV A in order to identify how th
NN control model deviates from its RN counterpart. T
theory will also provide an independent test of the simulat
results.

The control model starts as for the RN case with gene
tions 0 and 1 being identical. We can still apply Eq.~4.3! in
calculating^Ej

1& provided the upper limit on the integral i
appropriately modified~for simplicity we set it to`, for
which the equation is always valid!. Generation 2 is more
complicated than for the RN case since, as mentioned ab
we have to take into account that a second generation
can receive contributions from two neighboring first gene
tion supercritical sites. In generation 1 there can be zero
four supercritical sites; to analyze generation 2 we have
amined each of these possibilities in turn, weighting t
cases appropriately. The calculation is further complicated
the observation that the seed site~generation 0 toppling site!
can become supercritical again in generation 2 if all fo
sites in generation 1 are supercritical anda>(A221)/2. For
simplicity at this stage we exclude this possibility but w
provide a quantitative measure of its significance below.

Our expressions for̂E2
1& and ^n2& are

^E2
1&511

a

2
1

7a216a31a4

1216a
, ~4.15!

and

^n2&56a2~21a!. ~4.16!

The supercritical energŷE2
1& is larger than the correspond

ing RN result, ^E2
1&RN511a/21(3a212a3)/(1216a)

@see Eq.~4.8!#, which is precisely due to the possibility o
sites receiving contributions from more than one genera
1 neighbor. This apparent aid to criticality is negated by
reduced number of generation 2 supercritical sites^n2&,
which is only 3/4 of the value found in the RN case@see after
Eq. ~4.13!#. We again let̂ E1& (p) represent the approxima
tion to ^E1& found by truncating the summations in Eq.~4.2!
at generationp. Our results forp50,1,2 are shown in Fig. 10

l

3-8
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MEASUREMENTS OF CRITICALITY IN THE OLAMI- . . . PHYSICAL REVIEW E66, 016123 ~2002!
along with simulation results for the full̂E1&. Due to the
spatial organization in the NN model one can no longer
Eq. ~4.1! for determining the branching rates. However, we
can use our results for the first few generations to calcu
approximations fors. Truncating after generation 1 give
s (1)54a, while truncating after generation 2 yieldss (2)

5(4a112a216a3)/(114a). By generation 2 the branch
ing rate in the NN control model is below that in the corr
sponding RN case, a feature that is also found in simulati
of the two models. This difference is directly attributable
the reduced number of supercritical sites^n2& in generation
2. Both ^E1& (2) and s (2) prove to be excellent approxima
tions for a<0.1, but as can be seen from Fig. 10 more g
erations are clearly required for largera. Since the control
model is only being used to test the effect of organization
the full NN OFC model we do not believe that analytic e
amination of further generations is justified given the eff
required.

Before turning to the issue of organization we brie
comment on the effect of including the possible retopple
the seed site, mentioned above, upon our results. We con
trate on the casea50.25 for which this retopple is mos
likely to occur, and hence has the greatest impact. We
that ^E1& (2) changes from 1.092 806 to 1.092 850 ands (2)

changes from 0.9219 to 0.9297 upon including the retop
so that in each case the change is less than 1%. Finall
Fig. 11 we show the normalized energy distribution functio
for generations 1 and 2 for the casea50.25. For generation
2 we have included the retoppling of the seed site, wh
directly leads to the bump in the distribution between 1 a
11a51.25. In the absence of the seed site retopple the
tribution function is flat in this region but is otherwise indi
tinguishable from that shown in Fig. 11.

To conclude this section we want to compare the bran
ing rate of our unorganized control model with the full N
OFC model results found in Sec. III. The two sets of resu
are shown in Fig. 12 which reveals that the NN OFC mo
generally has a much higher branching rate than the con
case. This contrasts strongly with the RN situation~see Fig.

FIG. 10. Average toppling energy^E1& for the nearest-neighbo
control model determined using simulations~diamonds!, and the
corresponding approximationŝE1& (p) for p50 ~stars!, p51
~squares!, andp52 ~circles!.
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9! and leads us to conclude that organization in the near
neighbor OFC model is a positive feature. To get a quant
tive measure of the quality of the organizational process
introduce theorganization parameterm via

m5
s2scontrol

12scontrol
, ~4.17!

wheres andscontrol are the branching rates in the full OF
model and control model, respectively. With this definitionm
measures proportionally how much closer the NN O
model is to criticality compared to the control model. Th
m50 indicates that the organized data are no more crit
than uniformly random data, andm51 implies that the or-
ganized system is critical withs51. Results form for a
range ofa values are shown in Table III, where our data f
scontrol are also given. To calculatem we have used thes

FIG. 11. Normalized energy distribution functions of supercr
cal sites in generation 1 (f 1(11k), dashed!, and generation 2
( f 2(11k), solid! of the nearest-neighbor control model, plotted
functions of the energyE511k.

FIG. 12. Branching rate for the full nearest-neighbor OF
model~dashed! and the control case~solid! plotted as a function of
the conservation parametera.
3-9
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G. MILLER AND C. J. BOULTER PHYSICAL REVIEW E66, 016123 ~2002!
data from Table I, which also leads to the error estima
shown. These results show that self-organization in
nearest-neighbor OFC model takes the system at least
of the way toward criticality whenevera>0.20. Thus, al-
though we do not believe the model is genuinely critical
the nonconservative regimea,0.25, it does do a good job o
organizing toward a critical state.

In this section we have examined organization within
nearest- and random-neighbor OFC models and found
this is very good in the NN case, but is poor in the RN ca
This suggests that spatial correlations are essential for g
organization. In the RN OFC model spatial correlations c
not exist, and although the model does organize itself
resulting system is less critical than uniformly random da
In the NN OFC model spatial correlations are strong a
enable the system to approach a nearly critical state fo
wide range ofa values.

V. SUMMARY AND CONCLUSIONS

The OFC model is one of the most widely studied pro
types for self-organized criticality. In this paper we have e
amined both the level of criticality and the quality of se
organization that the model possesses. By introducing la
branching rates and using extensive simulation studies
have established that the nearest-neighbor OFC mode

TABLE III. Values of the nearest-neighbor control mod
branching ratescontrol and the organization parameterm for differ-
ent choices of the conservation parametera.

a scontrol m

0.17 0.5995 0.85060.013
0.18 0.6315 0.88660.014
0.19 0.6631 0.93860.012
0.20 0.6946 0.96160.010
0.21 0.7259 0.97260.003
0.22 0.7572 0.98360.003
0.23 0.7890 0.98760.003
0.24 0.8205 0.99360.003
0.25 0.8533 1.00060.00005
n
-

ak

et
A
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only critical in the conservative limita50.25. A similar re-
sult is known to hold for the random-neighbor OFC mod
suggesting that conservation is an essential ingredient in
taining a critical system. Our results are based on simula
studies of finite-sized lattices and so one could argue
criticality would be observed if larger systems were studi
Such a criticism always applies to simulation studies; ho
ever, we note that the layer branching rates near the cent
the large lattices fall convincingly on approximately straig
lines which do not extrapolate tos51 and thus we are con
fident that the model is not critical in the nonconservat
regime.

In order to examine the organization process we have
troduced control models for both random- and neare
neighbor cases. These models use unorganized uniform
dom data for the energies at the start of each avalanche
comparing the branching rate of the control models to th
of the full OFC models we have shown that organizati
lowers criticality in the random-neighbor case. In contra
self-organization greatly increases criticality in the neare
neighbor case, yielding nearly critical systems fora>0.20.

Thus in the nonconservative regime we conclude that
random-neighbor OFC model is poor, being neither criti
nor better organized than uniform random data. The near
neighbor OFC model also fails to be critical in the nonco
servative regime, but the organization in this model is go
leading to branching rates close to 1. Indeed, our estimate
the branching rate in the model are considerably higher t
previous predictions, and as a result this model may prov
the intended explanation of the ubiquity of power law dist
butions in nature. For the branching rates found we wo
expect to observe behavior consistent with a power law o
the large but finite range that would be observable in
experimental system. Hence, we have shown that s
organized ‘‘almost criticality’’ is a robust phenomenon in th
nearest-neighbor OFC model and would provide a plaus
explanation of many power law observations in nature.

ACKNOWLEDGMENT

This research was supported in part by The Royal Soci
U.K.
hys.
@1# An excellent review of the field is provided by H.J. Jense
Self-Organized Criticality~Cambridge University Press, Cam
bridge, England, 1998!.

@2# An accessible introduction to the subject is given by P. B
How Nature Works~Oxford University Press, Oxford, 1997!.

@3# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
~1987!; Phys. Rev. A38, 364 ~1988!.

@4# T. Hwa and M. Kardar, Phys. Rev. Lett.62, 1813~1989!; S.S.
Manna, L.B. Kiss, and J. Kerte´sz, J. Stat. Phys.61, 923~1990!.

@5# Z. Olami, H.J.S. Feder, and K. Christensen, Phys. Rev. L
68, 1244 ~1992!; K. Christensen and Z. Olami, Phys. Rev.
46, 1829~1992!.

@6# R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am.57, 341
,

,

t.

~1967!.
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