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Measurements of criticality in the Olami-Feder-Christensen model
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The Olami-Feder-Christensen model is a simple lattice based cellular automaton model introduced as a
prototype to study self-organization in systems with a continuous state variable. Despite its simplicity there
remains controversy over whether the system is truly critical in the nonconservative regime. Here we address
this issue by introducing the layer branching rate, which measures how contributions to the system branching
rate vary across the lattice. By considering this quantity for layers far from the edges of the finite-sized lattices,
we find that the model is only critical in the conservative limit, but that previous studies have underestimated
the system branching rate in the nonconservative case. We further derive expressions for the branching rate in
systems where the state variable across the lattice is described by a uniform distribution, in order to determine
the effect of self-organization upon the level of criticality. We find that organization raises the branching rate
in the nearest-neighbor case, but in contrast lowers the level of criticality in a random-neighbor model.
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[. INTRODUCTION the OFC model to provide a more controlled method for

The concept of self-organized criticalitOQ0 [1,2] was  extrapolating results to the infinite-lattice limit. In this way
introduced by Bak, Tang, and Wiesenf¢RITW) [3]in 1987  we predict thata=0.25 so that one only finds critical be-
in order to explain the presence of scale invariance in a rangeavior in the conservative limit. However, our method pre-
of naturally occurring systems. The BTW model consists of alicts that fora <« the OFC model is nearer criticality than
lattice with a number of sand grains at each site. The modehany previous estimates have suggested.
is driven by the random addition of sand, and relaxes via a In Sec. IV we introduce control cases for both the
sequence of avalanches. As this process is repeated th@ndom- and nearest-neighbor versions of the OFC model in
model evolves to a critical state where characteristic scales iarder to examine how well the models organize themselves.
space and time are lost. At each stage the number of grains &0br the nearest-neighbor model we find that, although the
sand is conserve(except at the system boundajiesid it  model is only critical in the conservative regime, the organi-
has been shown that this conservation is essential for critizational process is a positive one, resulting in near criticality
cality in the BTW model[4]. for a range ofa values. In contrast, self-organization in the

In many physical systems displaying apparent scale infandom-neighbor model lowers criticality with respect to the
variance there is some level of dissipation. For example, oneontrol case, making this a poor model whenewer0.25.
may consider earthquakes or landslide dynamics where theinally, in Sec. V we summarize our results and highlight the
appropriate dynamical variables are not necessarily conmain conclusions of our study.
served; thus one must go beyond the BTW model. In an
attempt to examine the effect of nonconservation on critical- II. THE OLAMI-FEDER-CHRISTENSEN MODEL
ity Olami, Feder, and Christensd®FC) [5] introduced a ) _ )
model motivated by the Burridge-Knopoff spring-block de-  1he OFC modefS] is a lattice based model which can be
scription of earthquake dynamif8]. The model is described defined in arbitrary space dimensiofid. For the purposes
in detail in Sec. Il and should be viewed as a toy model forOf this paper we concentrate on the two-dimensional case in
understanding some generic features of self-organizatiohich each nodei(j) on a square lattice is associated with a
rather than a realistic model of a particular physical processcontinuous state variable or energy . Initially the energies
playing much the same role as the Ising model does in sts€ assigned random values in an intef\ll) say; the up-
tistical mechanics. per limit on this interval coincides with the “threshold” de-

Within the OFC model there is a conservation parametefined below and can be fixed to unity without loss of gener-
a. Whena=0.25 the dynamic variables are conserved dur2lity. The system is then slowly driven in such a way that the
ing the avalanche process, whereas when0.25 there is €nergy at all the sites increases unlform_ly until one of the
some level of dissipation which grows ass reduced. There Sites reaches the threshold valyg=1 and is termed super-
exists a critical value of the conservation parameteraQ ~ cfitical. When this happens an avalanche occurs at a time
<0.25 such that the model displays genuine critical behaviopC@le much quicker than the driving speed. The supercritical

for a=a, and is noncritical fora<a.. For a random- Sité relaxes according to

neighbor version of the model it has been analytically estab- U —0 2.1)
lished that the system is never critical in the nonconservative 4 ' '
regime [7,8]. Within the nearest-neighbor version of the with its energy distributed tétypically) four neighborsipps,
model, determining the value af; has proved controversial ysing the rule

and this is one of the issues that we focus on in this paper. In

particular, in Sec. Ill, we introduce layer branching rates for Unbrs— Unprst aUjj (2.2
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wherea is the conservation parameter discussed in Sec. I. Ifiod” which grows rapidly with lattice size, severely limiting
any of the neighboring sites become supercritical., u,,s the ability to simulate large lattices.

=1) as a result of this process they also topple according to For the random-neighbor OFC model analytic progress
the same rules. The toppling process is non-Abelian and so ffas been possible using mean-field type calculations. Much
more than one site is supercritical either the sites must bef the formalism was developed by Lise and Jenged
toppled simultaneously, or a special sequential update mut2], who used a very simplified approximation for the dis-
be employed9]. The avalanche continues until all node val- tribution of energiesu;; across the lattice to prediatc "

ues are below the threshold, at which stage the driving pro=2/9- Using a more realistic energy distribution reveals that
cess proceeds until the next event is triggered. The two timée model is only critical in the conservative limit s
scales involved in the dynamics of the model are motivated=0.25[7,8,13. The LJ approach for the random-neighbor
from physical behavior such as earthquakes, where stre§80del involves an analysis of the branching ratéq) say,
builds up slowly between tectonic plates over years or deWhich measures the average number of _s_uperqutlcal descen-
cades(the driving phase while the energy release of the dants generated when a single supercritical site topples. In

: . the absence of an analytic solution for the nearest-neighbor
earthquakethe toppling phaseoccurs over seconds or min- . S . 4
utes quake PRING p OFC model, and given the limitations on the size of lattices

s that can be simulated discussed above, it has proved valuable
Within the model the parameter measures the level of . . .
L to also numerically analyze the branching rate in the nearest-

nonconservation in the system. df=0.25 all of the energy neighbor case
of the tf’pp"”g site is re_dis?ributed t_o_its neighbor_s gnd SO0 In a simulation one simply counts the number of super-
energy is conserved, while #<0.25 it is not. Two distinct . jtica| descendants generated when each supercritical ances-
versions of the model are defined by the choice of neighborq topples. The number of descendants assigned to an ances-
ing sites to which energy is distributed. For thearest-  tor may be noninteger, since a supercritical descendant that
neighbor (NN) OFC modehe sites adjacent to the toppling has originated from more than one neighboring ancestor has
site are chosen. If the toppling site is on the edge of a latticgs contribution split evenly between those ancestors. Further,
there are a reduced number of neighb(iveo for a corner sites at the boundary may have their branching rate weighted
and three for an edgethus the edges provide the only according to the number of neighbors present in order to
method of dissipation in the conservative case0.25. Fur-  ayoid artificially loweringe in a finite-size systerfil1]. It is

ther, the edges introduce an inhomogeneity into the systemraightforward to establish that the branching rafer,L)
which prevents synchronization and is crucial if one is tojy g finite-size { X L) system satisfiefL4]

observe SO10]. In arandom-neighbor (RN) OFC model

four sites are chosen at random to receive the toppling en-

ergy, with the assignment of neighbors changing at each up- o(a,L)=1- Sal)’ 2.3

date, thereby removing any spatial correlations in the system '

and preventing the possibility of synchronization. In the CONwheres(a,L) is the average avalanche size of the system.
servative limit one must include a dissipation mechanism tq-q, 5 critical process(a,L) always increases with system
allow the system to relax to a stable state, which may bg;ze since there is no characteristic scale in the system. Thus
done by simulating the effect of boundaries via the numbey, an infinitely large system a critical process is identified by
of neighbors chosen for each toppling site. For example, on g1 \hile <1 indicates a noncritical process. Recently,
lattice of sizeL XL, one could choose two neighbofsor-  ge carvalho and Pradd1] calculated the system branching
nep, three ne|gr21bor$edge), 0! four ne|ghb02rs(lgu|k) With  rateo(a,L) for a range of different values and inferred the
probabilities 4L°, 4(L—2)/L%, and L —2)7/L", respec- jnfinite-size limit via extrapolation. Using this approach, they
tively. suggest that the OFC model has a branching rate smaller

The presence of a self-organized critical state is indicate¢han 1 wheneverw< 0.25. with the branching rate close but
by a power law distribution of a measured event, for x-not equal to 1 when is close to the conservative limit
ample, the distribution of avalanche sizes in the OFC model_ 25 This latter behavior has been termed “almost criti-
Thus, as a first attempt to identify the critical valdag,  ca” and explains why the probability density plots appear
which separates the critical and noncritical regimes as d§jnear[15]. These findings have remained controversial with

scribed in Sec. I, one may examine log-log plots of simula-,temative extrapolation procedures showing the results may
tion data searching for straight line fits over several decade%e consistent withe"N<0.23[14]. As a result the question
o '=<0. .

On this basis Olami, Feder, and Christensen initially Identl'of whether conservation is necessary for criticality in the

. NN__ .
fied ac"~0.05[5] for the nearest-neighbor OFC model. 5Ec model remains open. We address precisely this issue in
Larger scale simulations have indicated that the critical valugne next section.

is somewhat higher, with Grassberger predictiff)'=0.18
[10] and more recent work suggesting™~0.25[11], indi-
cating that the nearest-neighbor model is never critical in the
nonconservative case. The primary difficulty in establishing In order to infer information about how the OFC model
a definitive result via this route has been the inability tobehaves on arbitrarily large lattices, using simulation studies,
simulate sufficiently large lattices. In the OFC model theit is necessary to introduce some form of extrapolation. Im-
system reaches an organized state only after a “transient pglicit in this approach is the assumption that near the center

Ill. THE LAYER BRANCHING RATE AND CRITICALITY
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FIG. 1. The layer branching rate’(a,L) for the nearest- FIG. 2. The layer branching rate'(«,L) for the nearest-
neighbor OFC model calculated for the case 0.22 and arange of  neighbor OFC model calculated for the case 0.22 and a range of
lattice sized. = 128,256,500,700,1000. lattice sized_ = 128,256,500,700,1000, plotted as a function of 1/

of a large lattice the behavior approaches that of an infinitelyjts that, for fixed., o2(a,L) is a poor guide tar2(a).

!arge system. If this is the case we beligye that more precisgyrther, as the layer branching rat€§«) for small enough
information can be extracted from the finiteX L) simula-  ygjyes ofi are easily accessible from the finite-size simula-

tions by calculating thdayer branching rateso'(a,L), i tions it is profitable to replace Eq3.1) with

=1,... L/2, for the latticd throughout our study we assume

thatL is even; forL odd theL/2 here and below should be o(a)=limoi(a) (3.3
replaced by I(+1)/2]. Heres' measures the average num- oo

ber of descendants originating from a supercritical site that

topples in layei, where layer 1 contains all the sites on the as our definition of the true system branching rate. While
boundary, layer 2 contains all sites one layer in from theFig_ 1 allows us to identify a lower bound fer(«) it does
boundary, and so on. Assuming that the sites farthest awayot enable easy extrapolation to the infinite-size limit. In Fig.
from the boundaries do indeed behave more like those enp we p|ot the same |ayer branching rate data against the
bedded in an infinitely large system, then for sufficientlyjnverse of the layer numberil/in this representation the
largeL, the o' will converge as increases, with a plausible results for the various lattice sizes can be straightforwardly
definition of the genuine branching rai§«) being given by exirapolated. In particular, far=25 the limiting values of
the layer branching rater'(«) lie on an approximately
straight line which extrapolates to 0.296.001. Thus we
concludeo(0.22)~0.996 and so the OFC model is noncriti-
cal for this value ofa. For clarity in Fig. 2 only a limited
number of layer values have been plotted and a relatively
large 1i range has been used. It may not be clear from this
figure that the limiting value of the layer branching rate
could not be 1, and hence in Fig. 3 we show the results for
r}he largest lattice size (=1000) on a larger scale, for which
the extrapolation to a noncritical value is more apparent.
The general behavior described above for the case
=0.22 is repeated for values of the conservation parameter
a=<0.23. Our results for the extrapolated branching rate and
the corresponding prediction for the average avalanche size
in the infinite volume limit(s(«)).. [found using Eq(2.3)]
are given in Table I. However, whem is close or equal to
the conservative limite=0.25 the behavior is slightly more
complicated. Thus before discussing the results further we
first provide a more detailed description of the cases
lim o' (a,L)=0d'(a), (3.2 =0.25 anda=0.24.
Lo _First, whena=0.25 we find that the layer branching rates
_ 0'(0.25) lie below 1 for the outer layers of the lattices, but
wherecd'(a) is the value of théth layer branching rate in an ¢'(0.25)=1 for i=5. This behavior is shown in Fig. 4,
arbitrarily large system. We observe from our simulation re-which also shows that the layer branching rate converges

o(a)=lim lim ¢'(a,L). (3.1
L—oi—L/2

Since we are relying on simulation studies the first limit
cannot be performed rigorously and so some form of ex
trapolation will still be required to deduce(«). However,
one hopes that the influence of the boundariesst{ay,L)
will be small fori nearL/2 in a large lattice. Thus the ex-
trapolation should allow more accurate results for a give
maximum system sizé. than direct examination of the
branching rater(«,L), which does depend on the behavior
near the boundary of the lattice.

A plot of some layer valuesr'(a,L) for the casea
=0.22 and a range of lattice sizess shown in Fig. 1. We
note that the plots for the various system sizes do overla
one another for small layer numbeisprovidedL is suffi-
ciently large. More precisely, for a particular layer branching
rate the simulation results convergelagcreases with

016123-3



G. MILLER AND C. J. BOULTER PHYSICAL REVIEW E66, 016123 (2002

1
0.99f
0.98f
i
(0
0.97f
0.96f .
091 = L =128 N
0.95f -0- L =256
0880 . 4+ L=500
000 _ _ . . % L =700
0 0.01 0.02 . 0.03 0.04 0.05 0'860 0.1 0.2 . 03 0.4 0.5
1/i 1/i
FIG. 3. The layer branching raie'(«=0.22].=1000) for the FIG. 4. The layer branching rate'(a,L) for the nearest-
nearest-neighbor OFC model, plotted as a function f 1/ neighbor OFC model calculated for the case 0.25 and a range of

lattice sized. =128,256,500,700, plotted as a function of. 1/

much more slowly in the outer layers in this case than for all

other choices ofx. In our simulations on smaller lattice sizes =0-25)~0.64 in the weighted case, and(a=0.25)~1 if

the layer branching rates dip below 1 again near the center §¥€ use the average of the remaining inner layers.

the lattice; however, this appears to be a finite-size result Whena=0.24 the behavior is different again. The outer
with thei— limiting behavior, as the lattice size increases,layers are reminiscent of the conservative case with the layer
tending toward 1 from above. As a result of this behavior thd2ranching rates increasing to a value above 1 by the fifth
system branching rate for a finite lattice(0.25), as cal- layer. However, these supercritical values only persist up to
culated by de Carvalho and Pradd] is very sensitive to the around the 20th layer, after wh|ch the layer .branchmg rate
definition of branching rate in the outermost layer. This ex-drops below 1, as shown in Fig. 5. Extrapolating the branch-
plains why those authors found a value of the branching rat#d rate to the infinite-size limit again yields a value close to,
slightly larger than 1 fore=0.25, which has been criticized Put measurably below, 1, describing a noncritical system.
for violating Eq.(2.3). This result is due to a weighting of  The various behaviors described above appear to indicate
the branching rate in the outside layer intended to accourft continuously changing influence of the layers nearest the
for the reduced number of neighbors present. Similarly, ig-dges of the lattice aa is reduced from the conservative
noring the outside layer entirely also leads to values of thdimit. For a typicala value the layer branching rates increase
branching rate larger than 1 in a finite simulatfdn], since ~ for the first few layers, reaching @ocal) maximum within

this essentially assumes that the branching rate of the outeif?€ outer five layers. As we go further into the interior of the
most value takes the average value of the inner layers—it iittice o' (a) decreases to a local minimum value before in-
clear from our study that this is not the case. In particular, wereasing again toward the limiting valug ). The location

find o}(@=0.25)~0.48 in the unweighted caser'(a of the minimum provides a measure of the region of influ-

1.02

TABLE |. Values of the extrapolated system branching rate
o(a) and the corresponding extrapolated average avalanche size
(s(a))., for different values of the conservation parameter~or
(s(«@)).. the ranges of possible values consistent wifla) are also
shown. The largest lattice size considered.is 1000 except for
a=0.25 where only systems up to=700 have been simulated.

o o(a) (s(a)).-
0.17 0.94@-0.005 16.7 (15.4-18.2)
0.18 0.958-0.005 23.8 (21.3:27.0) e L =128
0.19 0.97¢:0.004 47.6 (40.0-58.8) 094 "7 =256
0.20 0.988-0.003 83.3 (66.7111) —— L =700
0.21 0.99240.0008 132 (119-147) 0.92 <> L=1000 ) ) ) )
0.22 0.9958 0.0008 238 (200-294) 0 0.1 0.2 1/i 0.3 0.4 0.5
0.23 0.9973-0.0005 370 (313-455)
0.24 0.99870.0005 769 (556-1250) FIG. 5. The layer branching rate'(a,L) for the nearest-
0.25 1.000@: 0.000006 o (166667—x) neighbor OFC model calculated for the case 0.24 and a range of

lattice sized.=128,256,500,700,1000, plotted as a function of 1/
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FIG. 6. The layer branching rate'(«,L) for the nearest-
neighbor OFC model calculated for a range of conservation values F|G. 7. The scaled average avalanche Sigr,L))/(s(a))..

@=0.21,0.22,0.23,0.24,0.25, plotted as a function of Eor «  plotted for a range of andL values. The dashed line is the tanh fit
=0.25 a lattice of siz& =700 has been used, while=1000 for all  given in Eq.(3.4).

other values ofx shown.

Further support for this prediction can be found from the
ence of the enhanced values near the edge of the lattice. Tiagerage avalanche sizgs(a,L)) determined for various
results for a range ofr values are shown in Fig. 6. Far ~ conservation levelsa and lattice sizesL. For fixed a
=0.25 the minimum is only reached in the infinite size limit, <0.25 and L<500 we find that(s(a,L)) scales like
with the enhanced values persisting for all of the interior(S(a,L))~L%%% Although (s(a,L)) increases rapidly with
layers, leading to criticality. Whemr=0.24 we have seen L for relatively small lattice sizes, we assume thatas
(Fig. 5 that the maximum takes a supercritical value, and the@ne finds(s(a,L))—(s(«)).. suggesting that a tanh func-
minimum is not reached until one is at least 50 layers intdiion might yield a sensible fit for noncritical choices @f In
the system. Thus, if we interpret the location of the minimumparticular, we have fitted our data using
as a guide to the extent of finite-size effects in a noncritical
system, we see that large lattices need to be simulated to (s(a,L)) =tan)‘( 1 L
overcome these effects whan=0.24. Fora=0.23 the local (s(@))e A(a) [(s(@))-
maximum near the boundary is no longer the global maxi- o
mum, and the minimum is reached within the first 25 layers WhereA(a) and(s(a)).. are used as fitting parameters. The
As a is further decreased the local maximum and minimumfact thatL and(s(a)).. scale together inside the tanh func-
approach one another, and by the tise 0.21 they have tion mmally seems counterintuitive. However, observation of
disappeared altogether, with the layer branching rates didh€ sites involved in a given avalanche on the computer
playing monotonic behavior. Finally, we note that for any Screen reveals that a typical avalanche of sizenvolves

0.54

, (3.9

a;<a,<0.25 one findso'(a;)<o'(ay) for all layersi, sites in a long thin chaitwith length of ordemg) rather than
while the results forr=0.25 clearly do not satisfy this rela- & “blob” with radius of order yns, as might be anticipated.
tionship (see Fig. 6. We find that Eq.(3.4) provides an excellent fit for alk

Our results for the system branching ratée) given in <0.24 as shown in Fig. 7. The valueg of the. fitting param-
Table | are considerably larger than the values quoted by dgters are give in Table Il. The functioA(a) is approxi-
Carvalho and Prad§ll], indicating that the systems are Mately constant fowr<<0.22 and vanishes like (14«) as
nearer criticality than previously predicted. We believe our@—0.25. The values ofs(a)).. compare favorably with
results are more accurate because we have used the indlose given in Table | which were estimated directly from the
vidual layer branching rates, rather than the finite-systeniPranching rate data. Thus predictions of the branching rate
branching rates(e,L), which is strongly affected by the found from assuming the fitting fgnchon are also in good
results in the outermost layers. For example de Carvalho ar@reement with those found by direct measurement. d=or
Prado findo(a=0.22].)~0.955 for the largest lattice they =0.25 the data fofs(e,L)) follow a completely different
consider, which is a reasonable measure of the average n
branching rate across a finite number of layers. However, TABLE Il. Values of the fitting parameter8(a) and(s(a))..
comparison with Fig. 2 shows that this estimate is signifi-US€d in Fig. 7.
cantly lower than the layer branching rate for all but the 50
outermost layers of any simulation. Despite these quantita- “«
tive differences our results do agree qualitatively, with criti- A(«) 11.60 11.60 11.60 11.60 11.30 10.20 7.10 3.28
cal behavior in the nearest-neighbor OFC model being pre¢s(a)),, 17.7 27.8 485 816 140 240 368 700
dicted only in the conservative limi#=0.25.

0.17 018 0.19 020 021 0.22 0.23 0.24
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pattern, always displaying an algebraic growth wittwhich  identifying the crossover valug. (which was the purpose of
is well modeled by the approximatiofs(a,L))~L2%43.  the LJ studybut is not suitable in general. To see why this is
Hence, while we accept that E(B.4) may only be one of the case, we note that {h;) represents the average number
many fits for the limited amount of data presented, it doesf supercritical sites in generatidnthen (E™) is formally
demonstrate a level of universality in the avalanche size datgiven by

for the nonconservative choices @f which is absent in the

conservative casee=0.25. This provides further evidence o
that criticality is found only in the conservative case. Z <ni><Ei+>
In conclusion, in this section we have analyzed simulation 4y =0
- (EN)=——— 42
data for both layer branching rates and average avalanche
sizes. All of these data are consistent with the prediction that Eo (ny)
=

the nearest-neighbor OFC model is critical only in the limit

a=0.25. However, our predictions for the system branching

rates are generally higher than previously suggested, indicatzor a critical process these summations are dominated by
ing that the model is “almost critical” for a wide range ef ~ contributions from high generationgarge i). In this case

values. (E;") approaches a limiting valugdentified by LJ as 1/(1
— a/2)] which is an excellent approximation fOE*). How-
IV. ORGANIZATION IN RANDOM- AND NEAREST- ever, for a noncritical process a typical avalanche only lasts a
NEIGHBOR OFC MODELS small, finite number of generations and so the summations in

Eq. (4.2) are dominated by low generation numbers. As we
In this section we present some analytic results describinghow below the assumptiqrEi*)=<Ej+> is not accurate for

control cases for the OFC models. The aim of this section i%arly generations and hence the LJ calculation needs to be
to determine how well the OFC models organize themselvegayised.
toward criticality, regardless of whether they are genuinely Now we are in a position to consider our control case for
critical or not. To determine this we consider control modelsthe RN OFC model. Within this model we use the same
in which the data areot Organizedand calculate the branch- topp“ng a|gorithm for d|5tr|but|ng the energy to neighboring
ing rate to compare with those of the full random-neighborsites as in the full RN OFC model. Here we model an infi-
and nearest-neighbor OFC models. Thus, in our control casestely large system in which we assume that no site receives
we assume that the site energigsat the start of each ava- more than one contribution in a single avalanche; hence the
lanche are drawn from a uniform distribution in the rangeenergy distribution of receiving sites is always uniform. This
[0,1). We consider the RN and NN cases in turn below.  factor stops any organization of the system, yielding the

branching rate of a nonorganized system. As the control

A. Random-neighbor model model uses uniform data at the start of each avalanche it is

To begin we analyze the random-neighbor OFC model fOIreasonabIe to try to obtain analytic resglt;. .
which some useful results can be found in the literature. In .\.Ne start by looking at the. energy distributions of Super-
particular, we reconsider the paper by Lise and Jefgh crltlc_al s_ltes in each ge_neratlon. We denote the n_ormallzed
that initiated analytic investigation of the random neighbord'smbm.'.On at generationby f;(1+k) vyhere (& k.) Is the
OFC model as discussed in Sec. II. Although their originalSUpe_rcrltlcal energy value. For a specific ggnera}@l‘l the
study was intended to describe the full RN OFC modelPossible energy valiues.are found to satisfyl0<g;(a)
many of the simplifications that LJ used are actually moreVhere gj(a)==i_;a’. Given tfe distribution function at
appropriate for our control case study. Most notably, theydeneratiorj we can calculat¢E;) via the definition
assumed that the distribution of energies in subcritical sites
follow a uniform distribution at every stage of the avalanche. N gj(@)
Using this assumption they identified that the branching rate (Ej)= fo (1+k)f(1+k)dk. 4.3
o is given exactly by

o=4a(E™"), (4.1  As we are trying to model an infinitely large system we
assume that prior to the start of an avalanche the site with

where(E™) is the average energy of a supercritical site im-maximum energy takes a value arbitrarily close to 1. Thus
mediately prior to toppling. Within their analysis LJ esti- after the driving phase all other sites remain uniformly dis-
mated(E™) by assuming that the statistics of ancestor andributed in the range (0,1). Hence the avalanche begins with
descendant sites are the same. To clarify, let us denote tlesingle seed site with an energy value identically equal to 1.
first site in the avalanche to topple as being generation O, allhis seed site is what we denote generation 0. The supercriti-
supercritical sites directly generated by this topple as generaal energy distribution of this zeroth generation is therefore
tion 1, all supercritical sites resulting from generation 1lgiven by aé function located at 1, sbo=&(1), (Eg)=1,
topples as generation 2, and so on. Using this definition L&nd(ny)=1. In toppling this site to four random neighbors
assumed that for any two generatiorendj, (E;") = (E,-+>, we obtain the distribution forf;, which is uniform in the
where(E;") is the average energy of a supercritical site inrange (1,4 «). More generally, we can relatg and fj
generationi. We believe this assumption is acceptable forthrough
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1 (9j(a)
N o
01

f(1+k)dk Osk'=g;,1(a),
fiaa(1+k)= e
otherW|se,

(4.9

where gj(a) is defined above,h(k’,a)=max0,(1/)
X(k"=«a)], and the normalization factor A

= @ fi(1+K)dkdK
Using Egs.(4.3 and (4.4) recursively we can formally
calculate( Ef) for anyj=1 using only our knowledge about

the distributionf,. In practice, we find that; is a piecewise

defined function containingnonzero pieces, and as a result
for arbitrarily largej the iterative application of these equa-
tions becomes computationally prohibitive. However, worth-

PHYSICAL REVIEW EG66, 016123 (2002

a . aVa(l+k)
(E,+1> 1+§(Ej + - (4.11

26

Although we cannot determine the value of Nar+ k) with-
out finding f;(1+k), we do know it is non-negative. Hence
by assuming that the contribution is zero we obtain a formal
lower bound for(EJH) using only(E ). Applying this
method recursively, starting frofE ) = 1 we find the lower
bound(E; )~=1+ a/2, which is identical to the exact result
Eq. (4.7), while (E;)~=1+ a/2+ «?/4, which should be
compared with Eq(4.8). The general result is

]

-3,

, (4.12

a

2

while progress can still be made by noting that in addition to

Eq (4.3 we can also work outE;’, ;) using the distribution
. Specifically, for a supercritical site in generatipmwith

which holds for anyj=0.
We can use these lower bounds in E4.2) to approxi-

energy 1+k, a neighboring site will become supercritical at mate(E™) provided we find corresponding approximations

generation +1 with probability «(1+k). The supercritical

for the average number of supercritical sit@s) in a given

energy of this descendant site is uniformly distributed in thegeneration. The procedure for calculati(_ ;) from (n;)

range (1,% a+ ak);
+ al2+ akl/2). To determde 1) We must integrate over
all the possiblé values in the range:ek<g (a), where we
need to weight each contribution of {—1a/2+ ak/2) by the
appropriate ancestor probabiliti;(1+k) and descendant
probability a(1+Kk), yielding

glj(a)(1+ K)[1+(al2)(1+k)]f;(1+k)dk
0
<E]+1>_

gj(a@)
j (1+k)fj(1+k)dk
0
(4.9
Either Eq.(4.3) or Eq.(4.5) can be used to obtaithe samg

results for the average supercritical energy in the first few

generations:
(Eg)=1, (4.6)
o
(EI)=1+§, (4.7)
Ef)=1+ = o @ 4.8
(Bo)=1t 5+ o i iza “8

2 4

For a given distribution functiorf; we define the corre-
sponding expectation operatgy in a standard fashion with

E;[s(k)1=J3“s(k)f;(1+k)dk. Thus Eq.(4.5) can be re-
ertten in the form

a Ej[(1+k)?]

E' 1+ = , 4.9
(Ejv)= 2 E[(1+k)] (4.9

where by definitior{see Eq.(4.3)]
Ei[(1+K)] <E ). (4.10

therefore the average value is (1 is similar to that used in finding E@4.5). In particular, not-

ing that 4n;) sites receive contributions at this level, we
obtain

gj(e) N
(4.13

For the first few generations this givésg)=1, (n;)=4«,
and({n,)=16a%(1+ a/2). Inserting Eq(4.13) into Eq.(4.2)
yields an exact expression f¢E™) in terms of the indi-
vidual generation supercritical energléE Y. If we let
(E*)® represent the approximation ¢& *) found by trun-
cating the summations in E¢4.2) at generatiorp, we find

[(4a)'ll[ (Ej >]

(EF)P) =

p
2
p__ (4.14
1+ 2>

[ 4a)i+1H <EJ+>}
j=0

We approxmate(E ) using the lower bounds given in Eq.
(4.12 to obtain approxmate values fQE™ )P for a range

of p values. Asp gets large the error due to truncation is
reduced, and we formally obtain our approximation{f&r")

by considering the limip—c. We have compared our pre-
dictions with simulations of the control model and the results
are shown in Fig. 8, where for comparison we have also
plotted the LJ approximatiotE " )~=1/(1— a/2) [12]. We
can see that, although our result is approximate, because we
have used the lower boundEf)ﬁ it is in excellent agree-
ment with the simulation data. The LJ results are signifi-
cantly larger untila=2/9, after which our results coincide
because the control model becomes critisgle below, and

as discussed earlier the LJ approximation is a reasonable one
for cases where the model is critical.

Using this and the statistical definition of the variance, Eq. The goal of this section is to calculate the branching rate

(4.9 simplifies to

o for the control model. Since the distribution of subcritical
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1.15 T T T T organized criticality in two respects. First, as has previously
been established it is always noncritical in the nonconserva-
tive regime. Secondly, we have shown here that the organi-
zational process in the RN OFC model lowers the level of

1.1} criticality in comparison with uniform random data.

( E+) B. Nearest-neighbor model
We now examine a similar control model for a nearest-
1.05} neighbor situation. At the start of each avalanche the energies

of noncritical sites are again assumed to be distributed uni-
formly in [0,1). In contrast to the random-neighbor study
above, we no longer expect this simplification to allow us to
., - ) . . develop a complete theory as correlations are expected to
5 0.05 0.1 0.15 0.2 0.25 build up during the course of a single avalanche. This fol-
o lows since sites may receive contributions from more than
FIG. 8. Average toppling energié& ") calculated for the ran- ONe€ neighbor, and topple more than once during a given ava-
dom neighbor control model via simulatiofsircles and approxi-  1anche. Thus we will need to rely on simulations of the con-
mated using lower boundf )< for the generation toppling ener- trol model to some extent. However, we examine the first
gies (solid line). The result of the Lise-Jensen approximation few generations of the toppling process analytically in a
method is also showfdot-dashed ling similar fashion as in Sec. IV A in order to identify how the
NN control model deviates from its RN counterpart. The
sites has been assumed uniform in the range (0,1)(&f. theory will also provide an independent test of the simulation
can be used to find-. Within our scheme we use our ap- resullts.
proximation for(E*) to derive a value for the branching rate The control model starts as for the RN case with genera-
which is again found to be in excellent agreement with thelions 0 and 1 being identical. We can still apply £4.3 in
simulation results of the control case. Thus we believe oufalculating(E;") provided the upper limit on the integral is
results can be used to provide a reliable measure of the ofppropriately modifiedfor simplicity we set it toe, for
ganizational quality of the full RN OFC model. As expected, which the equation is always vajidGeneration 2 is more
we find that the control model is criticalo=1) when « complicated than for the RN case since, as mentioned above,
=2/9, in agreement with the analysis of [1P]. In Fig. 9we  Wwe have to take into account that a second generation site
plot the branching rates for the control case and the fulan receive contributions from two neighboring first genera-
model. We note from this figure that the branching rate in theion supercritical sites. In generation 1 there can be zero to
full model for all a values is lower than in the control case; four supercritical sites; to analyze generation 2 we have ex-
this indicates that organization in the RN model is a negativédmined each of these possibilities in turn, weighting the
feature. In other words, the organized data are less criticdlases appropriately. The calculation is further complicated by
than uniformly random data. the observation that the seed digeneration 0 toppling sije
Hence, in conclusion, we believe that the random-can become supercritical again in generation 2 if all four
neighbor OFC model is a poor prototype for studying self-sites in generation 1 are supercritical are (\2—1)/2. For
simplicity at this stage we exclude this possibility but we
1.2 . . . . provide a quantitative measure of its significance below.

Our expressions fofE; ) and(n,) are
L £+ _1+a+7a2+6a3+a4 a1
1 (E2)=1+73 12+ 6a ' (4.19
0.9f and
008 (ny)=6a%(2+a). (4.16
The supercritical energ¢E, ) is larger than the correspond-
0.7 ing RN result, (E] )RN=1+ a/2+ (3a2+2a%)/(12+ 6a)
0.6b- | [see Eq.(4.8)], which is precisely due to the possibility of
' sites receiving contributions from more than one generation
1 neighbor. This apparent aid to criticality is negated by a

00515 0.17 0.19 0.21 0.23 0.25 reduced number of generation 2 supercritical sitas),
o which is only 3/4 of the value found in the RN cdsee after
FIG. 9. Branching rate for the full random-neighbor OFC model EQ. (4.13]. We again lef E*)() represent the approxima-
(dashedl and the control casésolid) plotted as a function of the tion to(E™) found by truncating the summations in Eq.2)
conservation parameter. at generatiom. Our results fop=0,1,2 are shown in Fig. 10

016123-8



MEASUREMENTS OF CRITICALITY IN THE OLAMI- ... PHYSICAL REVIEW E66, 016123 (2002

1.15 4
R \
c 3t
1.1} g
225
(E*) B,
o
L >
1.05 S15
(V]
c
w 1r
ny 0.5
N N N N L
0 0.05 0.1 0.15 0.2 0.25 0 . . O . .
o 1 1.1 1.2 1.3 1.4 1.5 1.6
FIG. 10. Average toppling enerdf ") for the nearest-neighbor 1+kK
control model determined using simulatiofdiamond$, and the FIG. 11. Normalized energy distribution functions of supercriti-
corresponding approximation$E*)® for p=0 (stary, p=1 cal sites in generation 1f{(1+Kk), dashe§i and generation 2
(squarey andp=2 (circles. (fo(1+K), solid) of the nearest-neighbor control model, plotted as

functions of the energfE=1+k.

along with simulation results for the fulE*). Due to the
spatial organization in the NN model one can no longer us®) and leads us to conclude that organization in the nearest-
Eq. (4.1) for determining the branching rate However, we  neighbor OFC model is a positive feature. To get a quantita-
can use our results for the first few generations to calculatéve measure of the quality of the organizational process we
approximations foro. Truncating after generation 1 gives introduce theorganization parameteg via
oM=4qa, while truncating after generation 2 yields®
=(4a+122°+60°%)/(1+4a). By generation 2 the branch-
ing rate in the NN control model is below that in the corre- n=
sponding RN case, a feature that is also found in simulations
of the two models. This difference is directly attributable to ] )
the reduced number of supercritical sites) in generation Whereo ando°" are the branching rates in the full OFC
2. Both (E*)® and ¢(® prove to be excellent approxima- model and control _model, respectively. With this definitjon
tions for @<0.1, but as can be seen from Fig. 10 more geninéasures proportionally how much closer the NN OFC
erations are clearly required for larger Since the control Model is to criticality compared to the control model. Thus
model is only being used to test the effect of organization i =0 indicates that the organized data are no more critical
the full NN OFC model we do not believe that analytic ex- than uniformly random data, and=1 implies that the or-
amination of further generations is justified given the effortganized system is critical witr=1. Results foru for a
required. range ofa values are shown in Table Ill, where our data for

Before turning to the issue of organization we briefly o°"" are also given. To calculate we have used the-
comment on the effect of including the possible retopple of
the seed site, mentioned above, upon our results. We concen- 4}
trate on the caser=0.25 for which this retopple is most -
likely to occur, and hence has the greatest impact. We find 25
that (E*)(® changes from 1.092 806 to 1.092 850 and
changes from 0.9219 to 0.9297 upon including the retopple,
so that in each case the change is less than 1%. Finally, in©
Fig. 11 we show the normalized energy distribution functions
for generations 1 and 2 for the case=0.25. For generation
2 we have included the retoppling of the seed site, which
directly leads to the bump in the distribution between 1 and
1+ a=1.25. In the absence of the seed site retopple the dis-
tribution function is flat in this region but is otherwise indis-
tinguishable from that shown in Fig. 11.

To conclude this section we want to compare the branch- 0.6 . . .
ing rate of our unorganized control model with the full NN 0.17 0.19 0.21 o 0.23 0.25
OFC model results found in Sec. lll. The two sets of results
are shown in Fig. 12 which reveals that the NN OFC model FIG. 12. Branching rate for the full nearest-neighbor OFC
generally has a much higher branching rate than the contrehodel(dashedand the control casgsolid) plotted as a function of
case. This contrasts strongly with the RN situatisee Fig. the conservation parametet

o— O_control

(4.17

1— O_control’

0.7r
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TABLE llIl. Values of the nearest-neighbor control model only critical in the conservative limitv=0.25. A similar re-
branching rater*"" and the organization parameterfor differ-  sult is known to hold for the random-neighbor OFC model,
ent choices of the conservation parameter suggesting that conservation is an essential ingredient in ob-

p— taining a critical system. Our results are based on simulation
a a M studies of finite-sized lattices and so one could argue that
0.17 0.5995 0.8580.013 criticality v_vpL_JId be observed .n‘ Iarger_ systems were st.ud|ed.
0.18 0.6315 0.8860.014 Such a criticism always applies to_ simulation studies; how-
ever, we note that the layer branching rates near the center of
0.19 0.6631 0.9380.012 . o . .
the large lattices fall convincingly on approximately straight
0.20 0.6946 0.9610.010 . .
lines which do not extrapolate ®=1 and thus we are con-
0.21 0.7259 0.9720.003 fident that the model is not critical in the nonconservative
0.22 0.7572 0.9830.003 regime
0.23 0.7890 0.9870.003 In order to examine the organization process we have in-
0.24 0.8205 0.9980.003 troduced control models for both random- and nearest-
0.25 0.8533 1.0060.00005

neighbor cases. These models use unorganized uniform ran-
dom data for the energies at the start of each avalanche. By

data from Table I, which also leads to the error estimates °Parng the branching rate of the control models to those

shown. These results show that self-organization in th Of the full OFC models we have shown that organization

. i wers criticality in the random-neighbor case. In contrast,
nearest-neighbor OFC model takes the system at least 95sft)’elf-organization greatly increases criticality in the nearest-

of the way toward criticality wheneves#=0.20. Thus, al- neiahbor case. vieldina nearly critical svstems &Ge 0,20

though we do not believe the model is genuinely critical in 9 . Y 9 Y al Sy s

the nonconservative reqi 0.25. it does do a qood iob of Thus in the nonconservative regime we conclude that the
g L 9 J random-neighbor OFC model is poor, being neither critical

organizing tOV.Vafd a critical state. o - nor better organized than uniform random data. The nearest-
In this section we have examined organization within the

) eighbor OFC model also fails to be critical in the noncon-
nearest- and random-neighbor OFC models and found that . : A :
this is very good in the NN case, but is poor in the RN case, ervative regime, but the organization in this model is good

; . . . ading to branching rates close to 1. Indeed, our estimates of
This suggests that spatial correlations are essentlz_il for 9990e branching rate in the model are considerably higher than
organization. In the RN OFC model spatial correlations can-

not exist, and although the model does organize itself th revious predictions, and as a result this model may provide

resulting system is less critical than uniformly random data e intended explanation of the ubiquity of power law distri-

In the NN OFC model spatial correlations are stron andbutions in nature. For the branching rates found we would
P o 9 expect to observe behavior consistent with a power law over
enable the system to approach a nearly critical state for

wide range ofa values the Ia_rge but finite range that would be observable in an
' experimental system. Hence, we have shown that self-

organized “almost criticality” is a robust phenomenon in the

nearest-neighbor OFC model and would provide a plausible

The OFC model is one of the most widely studied proto_explana\tion of many power law observations in nature.
types for self-organized criticality. In this paper we have ex-
amine_d b_oth the level of criticality and the quality (_)f self- ACKNOWLEDGMENT
organization that the model possesses. By introducing layer
branching rates and using extensive simulation studies we This research was supported in part by The Royal Society,
have established that the nearest-neighbor OFC model 13.K.
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